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ABSTRACT

A multi-criteria calibration procedure is proposed for parameter calibration of
microscopic traffic simulation platforms. The impetus for this paper is provided by increased
usage of microscopic simulation models in transportation safety studies. Before such models can
be adopted in safety research it is important that we obtain parameter values that reflect real
world traffic conditions. Current state-of-the-art Genetic Algorithm calibration procedures only
allow for one measure of performance in parameter calibration. In safety studies, the fitting
function used in calibration has been safety performance. Therefore, the underlying traffic-
related factors, such as speed, volumes and density have not been directly considered in
calibration. Since these models are based on simulating traffic and calibration needs to be based
observed traffic attributes. The proposed multi-criteria procedure would allow for the direct
calibration of these traffic attributes while at same time producing accurate estimates of safety
performance. The multi-criteria procedure is applied to a sample of vehicle tracking data and the
results are compared to parameter values suggested by a single-criteria approach and platform
defaults. The application of a multi-criteria approach using traffic attributes yielded
correspondingly good estimates of safety performance for the NGSIM dataset.
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INTRODUCTION

In order to better appreciate the link between time-dependent traffic and corresponding
high risk driving behaviour, researchers have turned to microscopic traffic simulation models.
These models consider a range of individual driving situations that potentially could impact
safety, and hence assist in the development and evaluation of cost-effective countermeasures.

A major challenge inhibiting the application of microscopic traffic simulation in safety
studies is to bridge the gap between simulated and real-world driving experience. Researchers
who have been critical of using these types of models in safety studies commonly cite three basic
arguments [(1), (2)]: 1) traffic simulation is based on fundamental rules of crash avoidance, and
as such, it fails to provide a full explanation for high risk driving behavior leading to crashes, 2)
the results from simulation model applications are only as good as the accuracy and reliability of
their relevant input parameters and the model’s ability to explain “real world” traffic conditions,
and 3) safety performance is a conceptual yardstick that is only relevant within the context of
verifiable crash experience. These arguments present a number of technical challenges that have
not been adequately addressed in the current safety literature.

The focus of this paper is to introduce a procedure for calibrating microscopic traffic
simulation models, for the purpose of estimating safety performance. Best estimates of input
parameters are obtained using a multi-criteria fitting function based on observed real-time traffic
attributes. The calibration framework introduced in this paper is applied to a sample of vehicle
tracking data obtained from the FHWA NGSIM (3) program as observed for freeway conditions.

The purposes of the application exercise are to:

a) Investigate the balance between separate traffic-based goodness-of-fit or error functions
and to the overall goodness-of-fit for the model.

b) Compare parameter values obtained from three different calibration approaches: multi-
criteria, single safety performance based criterion and default values.

REVIEW OF PREVIOUS CALIBRATION LITERATURE

As discussed by Hellinga (4), the use of microscopic traffic simulation models (e.g.
VISSIM, INTEGRATION, PARAMICS, SIMTRAFFIC) requires the calibration of parameters
that govern underlying driving behaviour, such as gap-acceptance, lane-change, and car-
following. In calibrating these parameters the analyst must first select suitable measures of
performance (MOP) to fit model outputs to “observational” traffic data. The main purpose of the
calibration is to obtain parameter values that minimize error between observed and simulated
MOP, normally expressed in terms of root mean squared error (RMSE) for volume or speed.

The selection of MOP is dictated by the type of study that is undertaken. For example, if
the focus is safety performance, then MOP should provide an indication of unsafe driver
behavior or crash potential at a given location (5). Alternatively if the focus of interest is traffic
flow, then MOP should be based on traffic flow indicators, such as, temporal progression of
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vehicles, their average speed or volume [(6); (7)]. The approach adopted in this paper however,
is that traffic is an input into safety performance, and as such, the minimization of error in traffic
attributes should lead to a minimization of error in safety performance. The two objectives are
then essentially linked.

The use of traffic simulation models in safety studies frequently requires the adoption of

surrogate safety performance (SP) measures, since crashes cannot be predicted directly from
simulation (8). There are a wide range of SP measures documented in the literature, including
“time to collision” (TTC), “post encroachment time” (PET), “maximum deceleration rate
required to avoid a crash (DRAC), among others [(5),(8), (9)]. Many of these measures are
themselves functions of individual vehicle-pair interactions, such as, differences in speed,
spacing and deceleration rates. Bonsal et.al (10) noted that with regard to modeling SP, it is
important to obtain traffic model input parameters that reflect real-world driving behavior in
terms of time dependent speed, spacing and deceleration at the vehicle specific level.

Previous research has focused on the use of either a practical heurist method (11) or the
use of Genetic Algorithms (GA) based on a single SP fitting function [(5), (6), (12)]. In the
approach proposed by Hourdakis et. al. (11), error was first minimized with respect to volume,
and once this was achieved minimized with respect to speed. However, this approach is rather
ad hoc in nature since the search technique for parameter input values is not objective and a
minimum error for volume does not necessarily result in a minimum error for speed or for that
matter for SP.

Cunto and Saccomanno (5) proposed the application of GA to obtain best estimate input
parameters in microscopic traffic models. GA is a search technique that mimics processes found
in nature, and involves a number of sequential steps (13):

1. Start with a population with random ‘chromosomes’ (initial population of parameter
values)

2. Calculated the fitness function for each chromosome (e.g. RMSE of speed)

Randomly decide to either *‘mutate’ or ‘crossover’

4. If mutation is selected, then we choose a ‘chromosome’ randomly from our population
and change the parameter values (govern by random process) to create an “offspring’
chromosome

5. If crossover is selected, we choose two ‘chromosomes’ and randomly swap information
(parameter values) to create an offspring chromosome

6. Drop the chromosome (parameter set) that yields the worse fitness results (e.g. higher
RMSE)

7. Return to step 3, and repeat the process.

8. The process is terminated when either the maximum number of iterations is achieved or
there are no changes in parameter sets between iterations

w

Table 1 summarizes the results of several recent calibration exercises involving single
fitness functions applied to several microscopic traffic simulation platforms. Park and Qi (12)
calibrated VISSIM parameters using travel time as the MOP at an intersection between US15
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and US250 in Virginia. Kim et. al. (6) calibrated VISSIM parameters for an arterial road in
Houston, Texas using travel time as the MOP. Ma and Abdulhai (7) demonstrated a GA based
calibration procedure for PARAMICS using vehicle flow as the MOP. In a recent study of
surrogate safety measures by Cunto and Saccomanno (5) used GA to calibrate various VISSIM
input parameters based on a Crash Potential Index (CPI) as the SP fitting function. Observed
estimates of the MOP were obtained from NGSIM vehicle tracking data (3) for an intersection
on Lankershim Boulevard in Los Angeles.

Despite differences in the type of optimization and the nature of the underlying fitting
functions, all these studies share a common limitation in that best estimates of model parameters
are obtained using a ‘single’ fitting function (volume, travel time or SP). As such the
minimization of error fails to reflect a more complete balance of model performance that
encompasses both traffic attributes as well as safety. As noted previously, input parameters that
satisfy the minimization of error for one fitting function (say volume) does not ensure that they
minimize the error for other functions, say, vehicle speed or spacing or safety performance.

TABLE 1 Summary of Parameter Calibration Research Literature Results

Type of Measure of results of best

Study M Model Network Type X Notes
optimization Performance parameter estimate
Root mean square
Hourdarkis et. al (2003) heuristic search AIMSUM Freeway volume 8.84 % (RSPE) q
percentage error
Freewa Root mean square
Park and Qi (2005) genetic algorithm VISSIM i v travel time 12.6 % (RSPE) q
interchange percentage error
Mean absolute error
Kim et. al (2005) genetic algorithm VISSIM Freeway network travel time 1% (MAER) ratio
Ma and Abdulhai (2002) genetic algorithm  PARAMICS Arterial network flows 46.09 % (GRE) Global relative error
Cunto and Saccomanno CPI (Crash Root mean square
genetic algorithm VISSIM Intersection ( 0.026 % (RSPE) q
(2008) Potential Index) percentage error

The multi-criteria calibration approach proposed in this paper permits model calibration
based on n indicators of traffic and/or safety performance (e.g. speed, volume, travel time, CPI,
etc.). The two most common multi-criteria methods cited in the literature are (14):

1) Weighting Method which can be expressed mathematically as:
minz(x) = wy z;(x) + wyz,(x) + -+ + w;z;(x) (1)
st.x€eX

where, w; is the weight for the measure of performance i
z; is the measure of performance i (e.g. RMSE of speed)
X is a vector of parameters
X is the feasible region of the parameters
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2) ¢-Constrained Method which can be expressed as:
min z;(x) (2)
S.t. Xx€X
zi(x) < g foralli=1,2,...I-1, I4+1,....p

One of the MOP functions in the e-constrained method is arbitrarily chosen for minimization and
the other functions are treated as constraints.

In other types of applications, Madsen (15) used the MOP of low flow RMSE and peak flow
RMSE to calibrate the MIKE 11/NAM rainfall-runoff model parameters for a Danish catchment
basin. He demonstrated that using a two criteria (MOP) approach produced better estimates of
runoff when compared to a single MOP fitting function. Grierson (16) demonstrated the use of
multi-criteria parameter calibration for a building design (media centre) project in France, that
considered several measures, such as, optimal lighting, thermal heat loss, aesthetics, and building
costs. In the transportation field, Abdelghany and Mahmassani (17) used a multi-criteria
approach to solve a dynamic trip assignment problem for an intermodal network, based on MOP
values of average total travel time, average passenger time and average vehicle time for buses
and cars.

In general, the solution for the above Equations 1 or 2 will comprise a Pareto set of solutions
rather than a single unique solution, since there will be trade-offs between the different fitting
function errors or measures of performance (MOP). Grierson (16) has noted that the set of
Pareto solutions represents a front that satisfies the property of ‘non-dominance’, such that x; is a
Pareto front if two conditions are met:

1. For all non-members xi there exists at least one member of the front i where z;(X;) < zi(X)

foralli=1,...,l.
2. ltis not possible to find a xx within the Pareto front such that zj(xx) < zj(x;) for all i =
1,....l

All solutions along the Pareto front are considered “equally’ good, since any point on this front is
not dominated by any other point. The above properties means that any member of the Pareto set
will be better than other members for some criteria but could be worse for other criteria.
However, there are methodologies that can be utilized to objectively select a unique Pareto-
compromised set of solutions.

Grierson (16) demonstrated that the Pareto front can be normalized to eliminate the
scaling problem inherent in the fitness functions for different measures of performance. The
normalization procedure permits a geometric transformation of the fitting functions in order to
find the Pareto member closest to the origin (the unique optimal solution). The application
discussed in this paper is concerned primarily with obtaining the Pareto front and demonstrating
the multi-criteria parameter calibration procedure as applied to a microscopic traffic simulation
platform. The methodology of finding a unique Pareto-compromised solution will be
demonstrated in future research
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FORMULATION OF ERROR ANALYSIS

For this type of problem, “best estimate” parameter values cannot be obtained directly using
conventional statistical fitting. The simulation model produces a range of traffic attributes for
individual vehicles over time, including operating speed, spatial progression and acceleration.
Microscopic measures of safety performance, such as “time to collision” (TTC), “deceleration
rate to avoid the crash” (DRAC), “crash potential index” (CPI) are “composite” measures of
individual vehicle traffic attributes expressed over time and space. Hence, for the simulation of
safety performance a sound calibration process must reflect a duality of purpose: a) accurate
measures of traffic flow, and b) accurate measures of safety performance. Best estimate
parameter values for traffic simulation must satisfy both of these requirements.

The parameter input calibration can be quite complex, since depending on the underlying
simulation platform, “best estimate” values need to be specified for a rather extensive array of
significant model parameters affecting traffic. The two most widely distributed microscopic
traffic models VISSIM and PARAMICS, for example, each require specification of a large
number of input parameters that affect driving behavior and network performance. In this paper,
we will focus on the VISSIM Version 4.3 platform, which requires specification 33 parameters.

The calibration process can be quite complex given this large number of parameters in
need of specification. Consider a model consisting Zx parameters, such that:

Z=[2,,2,..Z,]

The first step in the process involves a screening procedure with the aim of reducing the original
set of Z, parameters to a smaller more manageable number for further analysis. Cunto and
Saccomanno (5) applied factorial design methods to reduce the 33 parameters in VISSIM to 6
statistically significant parameters. The best estimate values for these parameters needs to be
determined in order to obtain accurate measures of traffic attributes, and subsequently safety
performance.

In general, the calibration of a traffic simulation platform, such as VISSIM, can be
formulated as a Pareto optimization problem governed by two objective traffic-based fitting
functions: e.g. root-mean squared percentage error (RSPE) of speed {f1(z)} and RSPE of volume
{f2(2)} both of which can be solved using a GA to obtain best-fit estimates for parameters Z; to
Zy, such that:

2=[21,2,...,z]" in the feasible domain £2:

Minimize F = { f1(2), f2(z) } (3a)
Subjecttoze 2 (3b)
The two objective fitting functions can be expressed as:

fi(z) = 2[O° - E¥2)] (i=1,...N) (4a)
fi(z) = 2[0" - E'(2)] (i=1,..N) (4b)
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The feasible domain £2 is defined by the following constraints for the Z parameters being
calibrated:

Where:

50 < Maximum look ahead distance < 300
05<CC0O<3
-15<CCl< 4
0.1<CC3<2 (3)
2<CC5<20
-3.5 < Accepted deceleration of trailing vehicle < -0.5
0.2 < Safety distance factor < 0.8

O°® = Observed aggregated traffic speed (known data)

0" = Observed aggregated traffic volume (known data)

E°(z) = Estimated aggregated traffic speed (found from traffic simulator)

E'(z) = Estimated aggregated traffic volume (found from traffic simulator)

I = index of a time interval over which traffic speed and volume are aggregated
N = number of time intervals for which traffic speed and volume are aggregated
z2=[7,25,..., z7]" variable parameters used by the traffic simulator to estimate
traffic speed and volume (found by the Genetic Algorithm)

The solution for this problem is a set of calibration parameters z*, for which each of the
corresponding error terms f1(z*) and f,(z*) reflect a Pareto-optimal solution, such that no other
feasible set of parameters z can be obtained where fi(z) < fi(z') and f2(z) < fo(z'). The method
also yields a Pareto-compromise set of parameter values z° for which f1(z°) and f,(z°) represent
an equally-balanced trade-off in the error estimates between speed and volume.

CALIBRATION FRAMEWORK

Cunto and Saccomanno (5) proposed a five step screen process to reduce the initial number
of inputparameters in VISSIM to the most significant factors. Their process illustrated in Figure
1 consists of the following steps:

1.
2.

5.

Selection of initial parameters based on engineering judgment and literature review.
Initial screening of parameters using a Plackett-Burnman factorial design for each
measure of performance.

Establish linear expressions relating significant parameters to the measures of
performance using fractional factorial experimentation.

Obtain parameter sets using genetic algorithm based on either the weighted method or ¢-
constrained method.

Choose the compromise parameter set solution from the resultant Pareto front

The above-mentioned framework will be demonstrated through a case study application.
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CASE STUDY

As noted previously, observational traffic data for calibration was obtained from the Next
Generation SIMulation (FHWA, 2007). As illustrated in Figure 2, data were extracted from a
freeway segment of Highway 101 in California.

Ventura

Boulevard On-

ramp
Highway 101
(Study Area)

Cohuenga e
Boulevard Off- RS
ramp s

FIGURE 2 Study area of US Highway 101 (NGSIM 2007).
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A sensitivity analysis was undertaken to find parameters with statistically significant effects on
the various measures of performance. Cunto and Saccomanno (5) introduced a CP1 measure of
SP based on a comparison between maximum deceleration requirements and braking capability
estimated in time increments on a vehicle specific basis. Other measures of MOP include speed
and volume. The CPI SP measure is defined in terms of the probability that a given following or
response vehicle deceleration rate needed to avoid a crash (DRAC) with a lead or stimulus
vehicle exceeds its maximum available deceleration rate (MADR). Since MADR is vehicle and
scenario-specific, separate values of MADR need to be specified for each vehicle in the traffic
stream; such that

th;"l.,P(DRAci, >MADR; ) *At+b
CPI; = -= - e (2213)

T;

where,
CPI; = crash potential index for vehicle i
tii = initial time interval for vehicle i
tf; = final time interval for vehicle i
At = observation time interval (seconds)
T; = total simulated time for vehicle i (seconds)

A Plackett-Burnman factorial design was applied to the original set of VISSIM parameters
using ANOVA. Table 2 describes these parameters in VISSIM and it remains to obtain their
best estimate values. The results shown in Tables 3, 4, and 5 produced seven significant
parameters for further analysis. For this freeway application, the screening procedure yielded
seven statistically significant parameters that affect traffic and SP attributes in VISSIM.

TABLE 2 VISSIM Parameters that Affect MOPs of Speed, Volume and CPI

VISSIM Parameter  Description
A Maximum look ahead Defines the distance that vehicles can see forward to react to other

distance vehicles in front or beside it on the same link
B CcCo: Standstill distance (m), defines the desired distance between stopped
vehicles
C CcC1 Is the headway time in seconds that a driver wants to keep
D CC3 Threshold for entering Following, controls the start of the
deceleration process
E CC5 Following thresholds control the speed differences during the

following state. Smaller values result in a more sensitive reaction of
drivers to accelerations or decelerations of the preceding car

F Acceptable Affects lane change behaviour
deceleration of trailing
vehicle

G Safety distance factor Takes effect for; a) the safety distance of the trailing vehicle in the
new lane for the decision whether to change lanes or not, b) the own
safety distance during a lane change and c) the distance to the leading
(slower) lane changing vehicle
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TABLE 3 ANOVA Table for Main and Two-Factor Effects on Volume

Coefficients

Model Beta t Sig.
(Constant) 497.396 .000
A 326 5.636 .000
B -.136 -2.349 .023
C -.406 -7.008 .000
D 229 3.954 .000
E .035 599 551
F .002 034 973
G -427 -7.377 .000
CD 253 4.362 .000
DE -.108 -1.858 .069
DF -.130 -2.243 .029
DG 263 4,535 .000
EF -.366 -6.322 .000
EG .002 034 973
FG .038 .660 512

TABLE 4 ANOVA Table for Main and Two-Factor Effects on Speed

Coefficients
Model Beta t Sig.
(Constant) 425.789 .000
A -.303 -10.446 .000
B -172 -5.927 .000
C -.598 -20.596 .000
D -.266 -9.168 .000
E -112 -3.861 .000
F -127 -4.390 .000
G -.298 -10.253 .000
CD -311 -10.717 .000
DE -127 -4.364 .000
DF -141 -4.868 .000
DG =247 -8.509 .000
EF -.260 -8.961 .000
EG -115 -3.977 .000

FG -117 -4.042 .000
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TABLE 5 ANOVA Table for Main and Two-Factor Effects on CPI/Vehicle

Coefficients

Model .
Beta t Sig.

(Constant) 8.690 .000
A -.175 -2.503 .015
B .000 .001 .999
C 321 4.588 .000
D -.266 -3.811 .000
E -.020 -.285 776
F -.049 -.696 490
G 459 6.562 .000
CD -.256 -3.654 .001
DE .001 .018 .986
DF .004 .062 .950
DG -.338 -4.831 .000
EF 374 5.342 .000
EG -.019 =277 .783
FG -.062 -.882 .382

In this paper two fitting procedures were investigated: Procedure 1 involving a multi-
criteria MOP where root mean square error is minimized with respect to the two traffic
attributes: speed and volume. Procedure 2 involving a single SP based criterion where the root
mean square error is minimized in terms of CPI/vehicle (Cunto and Saccomanno, 2008). In both
procedures, a GA (MATLAB version R2007) was used to objectively search for the best fit
parameter set. The population of parameter values in the GA was kept the same for both
procedures so as to reduce the variability in error caused by randomness in the initial parameter
selection. Tables 6 and 7 summarize the VISSIM parameter values and corresponding RSPE for
different GA searches.
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TABLE 6 Approach 1- Multi-Criteria Approach (Calibrating using both RSPE Speed and
Volume; Corresponding RSPE CPI Shown)

- =
Q kel g é -
-g '%5 E g % GEJ’ % § Relative
= xg 3 g 2 8 €S 2T speed Voume CPIveh(10 RSPE V'T)ISUF:G Error in SE‘:;;‘:
K Ss 0 s s) s} o g =8 (km/h) (veh) 10) Speed (%) ) CPliveh )
2 <2 2= c L 3 (%)
g ga gs= & ks
g ~ £5s
1 294.62 2.87 1.49 “4.05 1.96 -0.29 0.79 73 1975 973,645  25.6 8.3 10.0 33.9
2 299.78 2.58 1.50 -4.01 1.99 -0.26 0.73 59 1926 866,478 1.9 10.5 21 12.4
3 297.55 2.99 1.50 -4.47 2.00 -0.25 0.80 70 1945 1,292,068  20.4 9.7 45.9 30.1
4 293.59 2.94 1.47 -4.24 1.99 -0.26 0.78 82 1989 854,907  41.2 76 34 48.9
5 282.86 2.74 1.37 -4.02 1.98 -0.28 0.79 80 1988 1,199,004 37.5 7.7 354 45.2
6 299.08 2.86 1.50 -4.01 1.98 -0.27 0.77 70 1940 1,508,226  20.1 9.9 70.3 29.9
7 297.26 3.00 1.50 -4.03 2.00 -0.25 0.80 71 1957 1,488,249 213 9.1 68.1 30.4
8 279.22 2.95 1.44 -4.16 1.93 -0.33 0.79 74 1997 1,332,134 27.7 73 50.5 34.9
9 277.90 2.94 1.48 -4.25 2.00 -0.25 0.80 74 1968 1,426,636  26.1 8.6 61.1 34.7
10 297.78 2.92 1.49 -4.04 1.97 -0.28 0.79 62 1947 043,160 6.2 9.6 6.5 15.8
1 294.80 2.98 1.48 -4.56 1.97 -0.28 0.80 63 1986 952,702 7.2 7.7 7.6 15.0

VISSIM

Defaults 250 15 0.9 -8 0.35 -0.5 0.6 104 1992 539,547 (o7 w5 391 86.2

Observed 58 2153 885,402

TABLE 7 Approach 2 — Single Criterion using RSPE CPI (Corresponding RSPE Speed

and Volumes are shown)

E 2 8

f=3 = o

8 gy £

c « S c
= i 8 S

% =1
é a é g é RSPE Relative
5 3 Q = ] 10 < g o Speed  Volume CPliveh  RSPE Error in
= 3 Q Q Q Q o] 10 Volume
p 2 O O O O i 3 (km/h) (veh) (10™)  Speed (%) ) CPl/veh
? S 82 S ° (%)
= ° @ k]
S T 0 S
|5} ~ Qe
- i 52§
I £ 3 ]
o = < %)
1 176.18 0.50 1.00 -8.85 1.66 -0.65 0.50 103 2057 875,155 77.0 4.5 1.2
2 201.31 2.67 1.44 -4.96 1.11 -1.30 0.78 71 1958 1,432,328 21.8 9.1 61.8
3 279.16 1.89 1.47 -5.64 1.30 -1.08 0.74 87 1978 667,775 49.2 8.1 24.6
4 272.78 2.92 1.12 -11.21 0.75 -1.74 0.54 102 2025 394,974 75.2 59 55.4
5 208.35 1.40 1.39 -6.03 1.10 -1.32 0.60 95 2017 1,066,616 62.8 6.3 20.5
6 180.89 1.27 1.03 -7.60 1.25 -1.14 0.55 102 1774 769,106 75.8 17.6 13.1

VISSIM Defaults 250 15 0.9 -8 0.35 -0.5 0.6 104 1992 539,547 78.7 7.5 39.1
Observed 58 2153 885,402

Figure 3 illustrates a comparison between the multi-criteria set of solutions and the single-

criterion results. In addition, this figure provides an indication of the fitting errors associated

with the VISSIM default parameter values.
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20.0
18.0 @ Multi-criteria (speed and volume) %
VISSIM defaults
16.0 X Single Objective
14.0 %Pareto Front
£ 1o
°
8 10.0
Foo e g
a 80 4 X
% L 2K X
6.0 X X
4.0 X
2.0
0.0

0.0 100 20.0 30.0 40.0 500 600 700 80.0 90.0

RSPE Volume (%)

FIGURE 3 RSPE volume versus RSPE speed.

Both the multi-criteria and the single SP-based criterion yielded reasonable root mean
squared percentage errors in comparison to NGSIM observations. However, as shown in Figure
3, the single criteria procedure provides good estimates of speed with respect to the multi-criteria
values, but poor results for volume. This potentially presents a problem of faith in the relevance
of the simulation approach applied to safety. An absence of precision in traffic attributes cannot
yield precision in safety performance if these attributes are themselves inputs in the SP measure.
The proposed multi-criteria procedure on the other hand, results in good estimates for both speed
and volume (with respect to NGSIM) and also reasonable measures of safety performance.
Particularly problematic is the arbitrary adoption of default values in safety studies. In Figure 3,
default values resulted in the highest RSPE errors for volume.

We note that from Table 6 for the multi-criteria procedure the lowest error in speed does
not match the lowest error in volume, or the lowest error in CPI/vehicle. This presents a major
calibration challenge, and any calibration exercise will need to address the issue of balance
between traffic attributes and SP, as well as overall model fitness considering all the traffic
attributes. Unfortunately this issue is not within the scope of this paper, but is currently being
investigated.



Duong, Saccomanno, and Hellinga 15

CONCLUSIONS

A multi-criteria calibration procedure has been presented for obtaining best estimate
parameter values for a microscopic traffic simulation platform (VISSIM). The multi-criteria
procedure based on traffic attributes is preferable to using a more abstract measure of safety
performance that is not as easily verified in the observed traffic data. A comparison of current
state-of-the-art calibration based on safety performance and the proposed multi-criteria
procedure based on speed and volume indicates that the multi-criteria procedure is able to yield
better estimates of traffic attributes, in addition to comparable estimates of safety performance.

When properly calibrated, simulation models can provide useful information on
individual driver responses to changing traffic and geometric road conditions. Since traffic
attributes are an integral part of safety performance, a calibration based on traffic attributes
provides a more thorough basis for investigating safety at a given location.
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