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ABSTRACT 
 

A multi-criteria calibration procedure is proposed for parameter calibration of 
microscopic traffic simulation platforms.  The impetus for this paper is provided by increased 
usage of microscopic simulation models in transportation safety studies.  Before such models can 
be adopted in safety research it is important that we obtain parameter values that reflect real 
world traffic conditions.  Current state-of-the-art Genetic Algorithm calibration procedures only 
allow for one measure of performance in parameter calibration.  In safety studies, the fitting 
function used in calibration has been safety performance.  Therefore, the underlying traffic-
related factors, such as speed, volumes and density have not been directly considered in 
calibration. Since these models are based on simulating traffic and calibration needs to be based 
observed traffic attributes.  The proposed multi-criteria procedure would allow for the direct 
calibration of these traffic attributes while at same time producing accurate estimates of safety 
performance.  The multi-criteria procedure is applied to a sample of vehicle tracking data and the 
results are compared to parameter values suggested by a single-criteria approach and platform 
defaults.  The application of a multi-criteria approach using traffic attributes yielded 
correspondingly good estimates of safety performance for the NGSIM dataset. 
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INTRODUCTION 
 

In order to better appreciate the link between time-dependent traffic and corresponding 
high risk driving behaviour, researchers have turned to microscopic traffic simulation models.  
These models consider a range of individual driving situations that potentially could impact 
safety, and hence assist in the development and evaluation of cost-effective countermeasures.   

A major challenge inhibiting the application of microscopic traffic simulation in safety 
studies is to bridge the gap between simulated and real-world driving experience.  Researchers 
who have been critical of using these types of models in safety studies commonly cite three basic 
arguments [(1), (2)]: 1) traffic simulation is based on fundamental rules of crash avoidance, and 
as such, it fails to provide a full explanation for high risk driving behavior leading to crashes,  2) 
the results from simulation model applications are only as good as the accuracy and reliability of 
their relevant input parameters and the model’s ability to explain “real world” traffic conditions, 
and 3) safety performance is a conceptual yardstick that is only relevant within the context of 
verifiable crash experience. These arguments present a number of technical challenges that have 
not been adequately addressed in the current safety literature.    

The focus of this paper is to introduce a procedure for calibrating microscopic traffic 
simulation models, for the purpose of estimating safety performance. Best estimates of input 
parameters are obtained using a multi-criteria fitting function based on observed real-time traffic 
attributes. The calibration framework introduced in this paper is applied to a sample of vehicle 
tracking data obtained from the FHWA NGSIM (3) program as observed for freeway conditions.  

 The purposes of the application exercise are to: 

a) Investigate the balance between separate traffic-based goodness-of-fit or error functions 
and to the overall goodness-of-fit for the model.   

b) Compare parameter values obtained from three different calibration approaches: multi-
criteria, single safety performance based criterion and default values. 

 

REVIEW OF PREVIOUS CALIBRATION LITERATURE 
 

As discussed by Hellinga (4), the use of microscopic traffic simulation models (e.g. 
VISSIM, INTEGRATION, PARAMICS, SIMTRAFFIC) requires the calibration of parameters 
that govern underlying driving behaviour, such as gap-acceptance, lane-change, and car-
following.  In calibrating these parameters the analyst must first select suitable measures of 
performance (MOP) to fit model outputs to “observational” traffic data. The main purpose of the 
calibration is to obtain parameter values that minimize error between observed and simulated 
MOP, normally expressed in terms of root mean squared error (RMSE) for volume or speed.   

The selection of MOP is dictated by the type of study that is undertaken.  For example, if 
the focus is safety performance, then MOP should provide an indication of unsafe driver 
behavior or crash potential at a given location (5). Alternatively if the focus of interest is traffic 
flow, then MOP should be based on traffic flow indicators, such as, temporal progression of 
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vehicles, their average speed or volume [(6); (7)]. The approach adopted in this paper however, 
is that traffic is an input into safety performance, and as such, the minimization of error in traffic 
attributes should lead to a minimization of error in safety performance. The two objectives are 
then essentially linked. 

The use of traffic simulation models in safety studies frequently requires the adoption of 
surrogate safety performance (SP) measures, since crashes cannot be predicted directly from 
simulation (8).  There are a wide range of SP measures documented in the literature, including 
“time to collision” (TTC), “post encroachment time” (PET), “maximum deceleration rate 
required to avoid a crash (DRAC), among others [(5),(8), (9)]. Many of these measures are 
themselves functions of individual vehicle-pair interactions, such as, differences in speed, 
spacing and deceleration rates.  Bonsal et.al (10) noted that with regard to modeling SP, it is 
important to obtain traffic model input parameters that reflect real-world driving behavior in 
terms of  time dependent speed, spacing and deceleration at the vehicle specific level. 

Previous research has focused on the use of either a practical heurist method (11) or the 
use of Genetic Algorithms (GA) based on a single SP fitting function [(5), (6), (12)].  In the 
approach proposed by Hourdakis et. al. (11), error was first minimized with respect to volume, 
and once this was achieved minimized with respect to speed.  However, this approach is rather 
ad hoc in nature since the search technique for parameter input values is not objective and a 
minimum error for volume does not necessarily result in a minimum error for speed or for that 
matter for SP.  
  Cunto and Saccomanno (5) proposed the application of GA to obtain best estimate input 
parameters in microscopic traffic models. GA is a search technique that mimics processes found 
in nature, and involves a number of sequential steps (13): 

1. Start with a population with random ‘chromosomes’ (initial population of parameter 
values) 

2. Calculated the fitness function for each chromosome (e.g. RMSE of speed) 
3. Randomly decide to either ‘mutate’ or ‘crossover’ 
4. If mutation is selected, then we choose a ‘chromosome’ randomly from our population 

and change the parameter values (govern by random process) to create an ‘offspring’ 
chromosome 

5. If crossover is selected, we choose two ‘chromosomes’ and randomly swap information 
(parameter values) to create an offspring chromosome 

6. Drop the chromosome (parameter set) that yields the worse fitness results (e.g. higher 
RMSE) 

7. Return to step 3, and repeat the process. 
8. The process is terminated when either the maximum number of iterations is achieved or 

there are no changes in parameter sets between iterations 

 Table 1 summarizes the results of several recent calibration exercises involving single 
fitness functions applied to several microscopic traffic simulation platforms.  Park and Qi (12) 
calibrated VISSIM parameters using travel time as the MOP at an intersection between US15 
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and US250 in Virginia.  Kim et. al. (6) calibrated VISSIM parameters for an arterial road in 
Houston, Texas using travel time as the MOP.  Ma and Abdulhai (7) demonstrated a GA based 
calibration procedure for PARAMICS using vehicle flow as the MOP.  In a recent study of 
surrogate safety measures by Cunto and Saccomanno (5) used GA to calibrate various VISSIM  
input parameters based on a Crash Potential Index (CPI)  as the SP fitting function. Observed 
estimates of the MOP were obtained from NGSIM vehicle tracking data (3) for an intersection 
on Lankershim Boulevard in Los Angeles. 
 Despite differences in the type of optimization and the nature of the underlying fitting 
functions, all these studies share a common limitation in that best estimates of model parameters 
are obtained using a ‘single’ fitting function (volume, travel time or SP). As such the 
minimization of error fails to reflect a more complete balance of model performance that 
encompasses both traffic attributes as well as safety.  As noted previously, input parameters that 
satisfy the minimization of error for one fitting function (say volume) does not ensure that they 
minimize the error for other functions, say, vehicle speed or spacing or safety performance.   
 

TABLE 1  Summary of Parameter Calibration Research Literature Results 

 

 The multi-criteria calibration approach proposed in this paper permits model calibration 
based on n indicators of traffic and/or safety performance (e.g. speed, volume, travel time, CPI, 
etc.).  The two most common multi-criteria methods cited in the literature are (14): 

1) Weighting Method which can be expressed mathematically as: 
              (1) 

                                 s.t. x Є X 
           
                     where, wi is the weight for the measure of performance i 
                                 zi is the measure of performance i (e.g. RMSE of speed) 
                                 x is a vector of parameters 
                                X is the feasible region of the parameters 
 

 

Study
Type of 

optimization
Model Network Type

Measure of 
Performance

results of best 
parameter estimate

Notes

Hourdarkis et. al (2003) heuristic search AIMSUM Freeway volume 8.84 % (RSPE)
Root mean square 
percentage error

Park and Qi (2005) genetic algorithm VISSIM
Freeway 

interchange
travel time 12.6 % (RSPE)

Root mean square 
percentage error

Kim et. al (2005) genetic algorithm VISSIM Freeway network travel time 1 % (MAER)
Mean absolute error 

ratio

Ma and Abdulhai (2002) genetic algorithm PARAMICS Arterial network flows 46.09 % (GRE) Global relative error

Cunto and Saccomanno 
(2008)

genetic algorithm VISSIM Intersection
CPI (Crash 

Potential Index)
0.026 % (RSPE)

Root mean square 
percentage error
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2) ε-Constrained Method which can be expressed as: 
                                                                                      (2) 

                                s.t.         x Є X 
                                for all i=1,2,…,l-1, l+1,…,p 

One of the MOP functions in the ε-constrained method is arbitrarily chosen for minimization and 
the other functions are treated as constraints. 

In other types of applications, Madsen (15) used the MOP of low flow RMSE and peak flow 
RMSE to calibrate the MIKE 11/NAM rainfall-runoff model parameters for a Danish catchment 
basin.  He demonstrated that using a two criteria (MOP) approach produced better estimates of 
runoff when compared to a single MOP fitting function.  Grierson (16) demonstrated the use of 
multi-criteria parameter calibration for a building design (media centre) project in France, that 
considered several measures, such as, optimal lighting, thermal heat loss, aesthetics, and building 
costs.  In the transportation field, Abdelghany and Mahmassani (17) used a multi-criteria 
approach to solve a dynamic trip assignment problem for an intermodal network, based on MOP 
values of average total travel time, average passenger time and average vehicle time for buses 
and cars. 

In general, the solution for the above Equations 1 or 2 will comprise a Pareto set of solutions 
rather than a single unique solution, since there will be trade-offs between the different fitting 
function errors or measures of performance (MOP).  Grierson (16) has noted that the set of 
Pareto solutions represents a front that satisfies the property of ‘non-dominance’, such that xi is a 
Pareto front if two conditions are met: 

1. For all non-members xk there exists at least one member of the front i where zi(xi) < zi(xk) 
for all i = 1,…,l. 

2. It is not possible to find a xk within the Pareto front such that zi(xk) < zi(xi) for all i = 
1,…,l. 

All solutions along the Pareto front are considered ‘equally’ good, since any point on this front is 
not dominated by any other point.  The above properties means that any member of the Pareto set 
will be better than other members for some criteria but could be worse for other criteria.  
However, there are methodologies that can be utilized to objectively select a unique Pareto-
compromised set of solutions.   

Grierson (16) demonstrated that the Pareto front can be normalized to eliminate the 
scaling problem inherent in the fitness functions for different measures of performance. The 
normalization procedure permits a geometric transformation of the fitting functions in order to 
find the Pareto member closest to the origin (the unique optimal solution).  The application 
discussed in this paper is concerned primarily with obtaining the Pareto front and demonstrating 
the multi-criteria parameter calibration procedure as applied to a microscopic traffic simulation 
platform.  The methodology of finding a unique Pareto-compromised solution will be 
demonstrated in future research 
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FORMULATION OF ERROR ANALYSIS 
 
For this type of problem, “best estimate” parameter values cannot be obtained directly using 

conventional statistical fitting. The simulation model produces a range of traffic attributes for 
individual vehicles over time, including operating speed, spatial progression and acceleration.  
Microscopic measures of safety performance, such as “time to collision” (TTC), “deceleration 
rate to avoid the crash” (DRAC), “crash potential index” (CPI) are “composite” measures of 
individual vehicle traffic attributes expressed over time and space.  Hence, for the simulation of 
safety performance a sound calibration process must reflect a duality of purpose: a) accurate 
measures of traffic flow, and b) accurate measures of safety performance.  Best estimate 
parameter values for traffic simulation must satisfy both of these requirements. 

The parameter input calibration can be quite complex, since depending on the underlying 
simulation platform, “best estimate” values need to be specified for a rather extensive array of  
significant model parameters affecting traffic.  The two most widely distributed microscopic 
traffic models VISSIM and PARAMICS, for example, each require specification of a large 
number of input parameters that affect driving behavior and network performance.  In this paper, 
we will focus on the VISSIM Version 4.3 platform, which requires specification 33 parameters.   

The calibration process can be quite complex given this large number of parameters in 
need of specification. Consider a model consisting Zk parameters, such that: 

],...,[ 21 kZZZZ =  

The first step in the process involves a screening procedure with the aim of reducing the original 
set of Zk parameters to a smaller more manageable number for further analysis. Cunto and 
Saccomanno (5) applied factorial design methods to reduce the 33 parameters in VISSIM to 6 
statistically significant parameters. The best estimate values for these parameters needs to be 
determined in order to obtain accurate measures of traffic attributes, and subsequently safety 
performance.  

In general, the calibration of a traffic simulation platform, such as VISSIM, can be  
formulated as a Pareto optimization problem governed by two objective traffic-based fitting 
functions: e.g. root-mean squared percentage error (RSPE) of speed {f1(z)} and  RSPE of volume 
{f2(z)} both of which can be solved using a GA to obtain best-fit estimates for parameters Z1 to 
Zk, such that: 
 
  z =[ z1 , z2 ,…, zk ]T in the feasible domain Ω : 
 

Minimize F = { f1(z), f2(z) }      (3a) 
Subject to z∈ Ω         (3b) 

The two objective fitting functions can be expressed as: 
 
  f1(z) = Σ [Os – Es(z)]i

2        (i = 1,…,N)   (4a) 
  f1(z) = Σ [Ov – Ev(z)]i

2        (i = 1,…,N)   (4b) 
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The feasible domain Ω  is defined by the following constraints for the Zk parameters being 
calibrated: 
   50 ≤  Maximum look ahead distance ≤  300 
  0.5 ≤  CC0 ≤  3 
  -15 ≤  CC1 ≤  -4 
  0.1 ≤  CC3 ≤  2        (3) 
     2 ≤  CC5 ≤  20 
          -3.5 ≤  Accepted deceleration of trailing vehicle ≤  -0.5 
  0.2 ≤  Safety distance factor ≤  0.8 
Where:  

Os = Observed aggregated traffic speed (known data) 
Ov = Observed aggregated traffic volume (known data) 

 Es(z) = Estimated aggregated traffic speed (found from traffic simulator) 
Ev(z) = Estimated aggregated traffic volume (found from traffic simulator) 
i = index of a time interval over which traffic speed and volume are aggregated 
N = number of time intervals for which traffic speed and volume are aggregated 

             z =[ z1 , z2 ,…, z7 ]T variable parameters used by the traffic simulator to estimate 
             traffic speed and volume (found by the Genetic Algorithm) 
The solution for this problem is a set of calibration parameters z*, for which each of the 
corresponding error terms  f1(z*) and f2(z*) reflect a Pareto-optimal solution, such that no other 
feasible set of parameters z  can be obtained where  f1(z) <  f1(z*)  and  f2(z) <  f2(z*).  The method 
also yields a Pareto-compromise set of parameter values  zo  for which  f1(zo) and f2(zo) represent 
an equally-balanced trade-off in the error estimates between speed and volume. 
 
CALIBRATION FRAMEWORK  
 

 Cunto and Saccomanno (5) proposed a five step screen process to reduce the initial number 
of inputparameters in VISSIM to the most significant factors.  Their process illustrated in Figure 
1 consists of the following steps: 

1. Selection of initial parameters based on engineering judgment and literature review. 
2. Initial screening of parameters using a Plackett-Burnman factorial design for each 

measure of performance. 
3. Establish linear expressions relating significant parameters to the measures of 

performance using fractional factorial experimentation. 
4. Obtain parameter sets using genetic algorithm based on either the weighted method or ε-

constrained method. 
5. Choose the compromise parameter set solution from the resultant Pareto front 

The above-mentioned framework will be demonstrated through a case study application. 
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FIGURE 1  Calibration framework. 
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CASE STUDY 
 

As noted previously, observational traffic data for calibration was obtained from the Next 
Generation SIMulation (FHWA, 2007). As illustrated in Figure 2, data were extracted from a 
freeway segment of Highway 101 in California.   

 
 

FIGURE 2  Study area of US Highway 101 (NGSIM 2007). 
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A sensitivity analysis was undertaken to find parameters with statistically significant effects on 
the various measures of performance.  Cunto and Saccomanno (5) introduced a CPI measure of 
SP based on a comparison between maximum deceleration requirements and braking capability 
estimated in time increments on a vehicle specific basis. Other measures of MOP include speed 
and volume.  The CPI SP measure is defined in terms of the probability that a given following or 
response vehicle deceleration rate needed to avoid a crash (DRAC) with a lead or stimulus 
vehicle exceeds its maximum available deceleration rate (MADR). Since MADR is vehicle and 
scenario-specific, separate values of MADR need to be specified for each vehicle in the traffic 
stream; such that 
 

                                          ………………………… (2.1.3) 
 
where, 
              CPIi = crash potential index for vehicle i   
                  tii = initial time interval for vehicle i 
                  tfi = final time interval for vehicle i 
                 ∆t = observation time interval (seconds) 
                 Ti = total simulated time for vehicle i (seconds) 

 

A Plackett-Burnman factorial design was applied to the original set of VISSIM parameters 
using ANOVA.  Table 2 describes these parameters in VISSIM and it remains to obtain their 
best estimate values.  The results shown in Tables 3, 4, and 5 produced seven significant 
parameters for further analysis.  For this freeway application, the screening procedure yielded 
seven statistically significant parameters that affect traffic and SP attributes in VISSIM. 

TABLE 2  VISSIM Parameters that Affect MOPs of Speed, Volume and CPI 

 VISSIM Parameter Description 
A Maximum look ahead 

distance                                              
Defines the distance that vehicles can see forward to react to other 
vehicles in front or beside it on the same link 

B CC0:  Standstill distance (m), defines the desired distance between stopped 
vehicles 

C CC1 Is the headway time in seconds that a driver wants to keep 
D CC3 Threshold for entering Following, controls the start of the 

deceleration process 
E CC5 Following thresholds control the speed differences during the 

following state. Smaller values result in a more sensitive reaction of 
drivers to accelerations or decelerations of the preceding car 

F Acceptable 
deceleration of trailing 
vehicle 

Affects lane change behaviour 

G Safety distance factor Takes effect for; a) the safety distance of the trailing vehicle in the 
new lane for the decision whether to change lanes or not, b) the own 
safety distance during a lane change and c) the distance to the leading 
(slower) lane changing vehicle 



Duong, Saccomanno, and Hellinga                                                                                                             11 

TABLE 3  ANOVA Table for Main and Two-Factor Effects on Volume 

Model 

Coefficients 

t Sig. Beta 
 (Constant)   497.396 .000 

A .326 5.636 .000 
B -.136 -2.349 .023 
C -.406 -7.008 .000 
D .229 3.954 .000 
E .035 .599 .551 
F .002 .034 .973 
G -.427 -7.377 .000 
CD .253 4.362 .000 
DE -.108 -1.858 .069 
DF -.130 -2.243 .029 
DG .263 4.535 .000 
EF -.366 -6.322 .000 
EG .002 .034 .973 
FG .038 .660 .512 

 

TABLE 4  ANOVA Table for Main and Two-Factor Effects on Speed 

Model 

Coefficients 

t Sig. Beta 
 (Constant)   425.789 .000 

A -.303 -10.446 .000 
B -.172 -5.927 .000 
C -.598 -20.596 .000 
D -.266 -9.168 .000 
E -.112 -3.861 .000 
F -.127 -4.390 .000 
G -.298 -10.253 .000 
CD -.311 -10.717 .000 
DE -.127 -4.364 .000 
DF -.141 -4.868 .000 
DG -.247 -8.509 .000 
EF -.260 -8.961 .000 
EG -.115 -3.977 .000 
FG -.117 -4.042 .000 
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TABLE 5  ANOVA Table for Main and Two-Factor Effects on CPI/Vehicle 
  

Coefficients 

t Sig.  Model Beta 
(Constant)   8.690 .000 
A -.175 -2.503 .015 
B .000 .001 .999 
C .321 4.588 .000 
D -.266 -3.811 .000 
E -.020 -.285 .776 
F -.049 -.696 .490 
G .459 6.562 .000 
CD -.256 -3.654 .001 
DE .001 .018 .986 
DF .004 .062 .950 
DG -.338 -4.831 .000 
EF .374 5.342 .000 
EG -.019 -.277 .783 
FG -.062 -.882 .382 

 

In this paper two fitting procedures were investigated: Procedure 1 involving a multi-
criteria MOP where root mean square error is minimized with respect to the two traffic 
attributes: speed and volume.  Procedure 2 involving  a single SP based criterion where the root 
mean square error is minimized in terms of CPI/vehicle (Cunto and Saccomanno, 2008).  In both 
procedures, a GA (MATLAB version R2007) was used to objectively search for the best fit 
parameter set.  The population of parameter values in the GA was kept the same for both 
procedures so as to reduce the variability in error caused by randomness in the initial parameter 
selection.  Tables 6 and 7 summarize the VISSIM parameter values and corresponding RSPE for 
different GA searches. 
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TABLE 6  Approach 1- Multi-Criteria Approach (Calibrating using both RSPE Speed and 
Volume; Corresponding RSPE CPI Shown)  

 

 

TABLE 7  Approach 2 – Single Criterion using RSPE CPI (Corresponding RSPE Speed 
and Volumes are shown) 

 

Figure 3 illustrates a comparison between the multi-criteria set of solutions and the single-
criterion results. In addition, this figure provides an indication of the fitting errors associated 
with the VISSIM default parameter values. 
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1 294.62 2.87 1.49 -4.05 1.96 -0.29 0.79 73 1975 973,645 25.6 8.3 10.0 33.9
2 299.78 2.58 1.50 -4.01 1.99 -0.26 0.73 59 1926 866,478 1.9 10.5 2.1 12.4
3 297.55 2.99 1.50 -4.47 2.00 -0.25 0.80 70 1945 1,292,068 20.4 9.7 45.9 30.1
4 293.59 2.94 1.47 -4.24 1.99 -0.26 0.78 82 1989 854,907 41.2 7.6 3.4 48.9
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VISSIM 
Defaults 250 1.5 0.9 -8 0.35 -0.5 0.6 104 1992 539,547        78.7 7.5 39.1 86.2

Observed 58 2153 885,402        
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(10-10)

RSPE 
Speed (%)

RSPE 
Volume 

(%)

Relative 
Error in 
CPI/veh 

(%)

1 176.18 0.50 1.00 -8.85 1.66 -0.65 0.50 103 2057 875,155 77.0 4.5 1.2

2 201.31 2.67 1.44 -4.96 1.11 -1.30 0.78 71 1958 1,432,328 21.8 9.1 61.8

3 279.16 1.89 1.47 -5.64 1.30 -1.08 0.74 87 1978 667,775    49.2 8.1 24.6

4 272.78 2.92 1.12 -11.21 0.75 -1.74 0.54 102 2025 394,974    75.2 5.9 55.4

5 208.35 1.40 1.39 -6.03 1.10 -1.32 0.60 95 2017 1,066,616 62.8 6.3 20.5

6 180.89 1.27 1.03 -7.60 1.25 -1.14 0.55 102 1774 769,106    75.8 17.6 13.1
VISSIM Defaults 250 1.5 0.9 -8 0.35 -0.5 0.6 104 1992 539,547    78.7 7.5 39.1

Observed 58 2153 885,402    
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FIGURE 3  RSPE volume versus RSPE speed. 
 

Both the multi-criteria and the single SP-based criterion yielded reasonable root mean 
squared percentage errors in comparison to NGSIM observations.  However, as shown in Figure 
3, the single criteria procedure provides good estimates of speed with respect to the multi-criteria 
values, but poor results for volume.  This potentially presents a problem of faith in the relevance 
of the simulation approach applied to safety. An absence of precision in traffic attributes cannot 
yield precision in safety performance if these attributes are themselves inputs in the SP measure.  
The proposed multi-criteria procedure on the other hand, results in good estimates for both speed 
and volume (with respect to NGSIM) and also reasonable measures of safety performance.  
Particularly problematic is the arbitrary adoption of default values in safety studies.  In Figure 3, 
default values resulted in the highest RSPE errors for volume. 

We note that from Table 6 for the multi-criteria procedure the lowest error in speed does 
not match the lowest error in volume, or the lowest error in CPI/vehicle. This presents a major 
calibration challenge, and any calibration exercise will need to address the issue of balance 
between traffic attributes and SP, as well as overall model fitness considering all the traffic 
attributes.  Unfortunately this issue is not within the scope of this paper, but is currently being 
investigated.   
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CONCLUSIONS 
 
A multi-criteria calibration procedure has been presented for obtaining best estimate 

parameter values for a microscopic traffic simulation platform (VISSIM).  The multi-criteria 
procedure based on traffic attributes is preferable to using a more abstract measure of safety 
performance that is not as easily verified in the observed traffic data.  A comparison of current 
state-of-the-art calibration based on safety performance and the proposed multi-criteria 
procedure based on speed and volume indicates that the multi-criteria procedure is able to yield 
better estimates of traffic attributes, in addition to comparable estimates of safety performance.  

When properly calibrated, simulation models can provide useful information on 
individual driver responses to changing traffic and geometric road conditions. Since traffic 
attributes are an integral part of safety performance, a calibration based on traffic attributes 
provides a more thorough basis for investigating safety at a given location.  
 
ACKNOWLEDGEMENT 
 
We are grateful to Professor Don Grierson for his valuable comments and suggestions on this 
research. 
 
REFERENCES 
 

1. Tarko, A.P., Songchitruksa, P. 2005.Estimating the Frequency of Crashes as Extreme traffic 
Events. Presented at 84th Annual Meeting of the Transportation Research Board, Washington 
D.C. 
 

2. Saunier, N., Sayed, T. 2007. Automated Road Safety Analysis Using Video Data. Transportation 
Research Record. Vol. 2019. pp 57-64. 
 

3. Federal Highway Administration (FHWA), US Highway 101 Dataset, Next Generation 
SIMulation Fact Sheet, FHWA-HRT-07-030, 2007, http://www.tfhrc.gov/about/07030.htm, 
Website accessed July 2007. 
 

4. Hellinga, B. R. Requirements for the calibration of traffic simulation models. Proceedings of the 
Canadian Society for Civil Engineering, 1998. 
 

5. Cunto, F., Saccomanno, F.F. Calibration and validation of simulated vehicle safety performance 
at signalized intersections. Accident Analysis and Prevention. Vol. 40, pp 1171-1179, 2008. 
 

6. Kim, SJ, Kim W, and Rilett, LR. Calibration of micro-simulation models using non-parametric 
statistical techniques. In Transportation Research Record: Journal of the Transportation 
Research Board, No.1935, Transportation Research Board of the National Academies, 
Washington, D.C., pp. 111–119, 2005. 



Duong, Saccomanno, and Hellinga                                                                                                             16 

 
7. Ma, T, and Abdulhai, B. Genetic algorithm-based optimization approach and generic tool for 

calibrating traffic microscopic simulation parameters. In Transportation Research Record: 
Journal of the Transportation Research Board, No.1800, Transportation Research Board of the 
National Academies, Washington, D.C., pp. 6–15, 2002. 
 

8. Gettman, D., and Head, L., Surrogate safety measures from traffic simulation models, Final 
Report, Federal Highway Administration, Publication No. FHWA-RD-03-050, 2003. 
 

9. Archer, J. Methods for the assessment and prediction of traffic safety at urban intersection and 
their application in micro-simulation modelling, PhD Thesis, Department of Infrastructure, 
Royal Institute of Technology,  Stockholm, Sweden, 2005. 
 

10. Bonsall, P., Liu, R., and Young, W. Modelling safety-related driving behaviour – impact of 
parameter values. In Transportation Research Part A, Vol 39, pp. 425 – 444, 2005. 
 

11. Hourdakis, J, Michalopoulos, P, and Kottommannil, J. A practical procedure for calibrating 
microscopic traffic simulation models. Presented at the 82nd Annual Meeting of the 
Transportation Research Board, Washington, DC., January, 2003.  
 

12. Park B and Qi H. Development and evaluation of a procedure for the calibration of simulation 
models. In Transportation Research Record: Journal of the Transportation Research Board, 
No.1934, Transportation Research Board of the National Academies, Washington, D.C., pp. 
208–217, 2005. 
 

13. Elbetagi, E., Hegazy, T., and Grierson, D. Comparison among five evolutionary-based 
optimization algorithms. Advance Engineering Informatics, Vol 19, pp 43-53, 2005. 
 

14. Goicoechea, A., Hansen, D.R., and Ducksten, L. Multiobjective decision analysis with 
engineering and business applications. Toronto: John Wiley & Sons Inc, 1982. 
 

15. Madsen, H.  Automatic calibration of a conceptual rainfall-runoff model using multiple 
objectives. Journal of Hydrology, Vol 235, 2000, pp. 276-288. 
 

16. Grierson, D. Pareto multi-criteria decision making. Journal of Advance Engineering Informatics, 
Vol 22, 2008, pp 371-384. 
 

17. Abdelghany, K.F. and Mahmassani, H.S. Dynamic trip assignment-simulation model for 
intermodal transportation networks.  . In Transportation Research Record: Journal of the 
Transportation Research Board, No.1771, Transportation Research Board of the National 
Academies, Washington, D.C., pp. 52–60, 2001. 


